Stage A: Models of division

Stage of development

Year One

- Solve one step problems involving division by using concrete objects, pictorial representations and arrays (with support)

Year Two

- Solve problems involving division using materials, arrays, repeated subtraction, mental methods and division facts, including problems in context
- Calculate mathematical statements for division within the multiplication tables and write them using division (\div) and equals (=) signs

Underlying skills:

- One to one correspondence matching a number name to each object
- Understand sharing as everyone having the same
- The physical process of sharing "one for you , one for me"
- Knowing to count how many in a group to find the answer
- Creating equal groups
- Counting groups
- Share objects into equal groups and count how many in each in practical problem solving contexts

Language: 6 Sweets shared between 2 children. How many sweets each? One for you, one for me.
Count how many each child has

- Group objects into groups ot equal size

Language: Each car needs 4 wheels. If I have 8 wheels how many cars can I make?
How many groups of 4 can I get from 8?
Count how many groups there are.

Stage B: Arrays and grouping
Stage of development

Year One

- Solve one step problems involving division by using concrete objects, pictorial representations and arrays (with support)

Year Two

- Solve problem involving division using materials, arrays, repeated subtraction, mental methods and division facts, including problems in context
- calculate mathematical statements for division within the multiplication tables and write them using division (\div) and equals (=) signs

Underlying skills:

- Understand how to read division calculations as 'how many groups'
- Count forwards in steps of different single digit numbers accurately, see pitch
- Knowledge of multiplication tables

Understand division as 'how many groups' e.g $6 \div 2=$ How many groups of 2 are there in 6 ?

- Arrays - count the groups

123

- Number line - jump in the appropriate size. Count the jumps.

- Use Numicon to represent division as grouping, how many 4 s can we fit in 12 ?

How many 4s can fit in $12 ?$

Start at 0 and add 4 s until you can't fit any more

Count the number of 4 s that fit in 12.

How many 4 s fit in 12 ?

Fill the 4 s into the 10 s number until you can't fit any more and count the 4 s .

- Include understanding of remainders

$$
30 \div 4=7 r 2
$$

This can also be represented using Numicon number rods and track

How many 4s can fit in 30 ?

74 s fit in 30 with two spaces not filled

This should be closely linked to multiplication as what is _groups of _. If we know that $3 \times 4=12$ then we know that 3 groups of 4 make 12 then how many groups of 4 are there in 12?

Stage C: grouping down

Stage of development
Year Two

- Solve problem involving division using materials, arrays, repeated subtraction, mental methods and division facts, including problems in context
- calculate mathematical statements for division within the multiplication tables and write them using division (\div) and equals (=) signs

Year Three

- Write and calculate mathematical statements for division, including for two digit numbers using mental and progressing to formal written methods

Underlying skills:

- Understand how to read number sentences as 'how many groups'
- Recall of appropriate multiplication facts
- Counting back in groups

Children need to be shown that finding how many groups can be done by starting at 0 and filling up or by starting at the top and working down. These should be done side by side so the children are clear that both methods give the same answer

- Filling down on a number line.

1

How many 4 s fit in 30 ?
Start filling from the end.
3

Keep filling until no more will fit. look at the number to find the remainder.

The answer is still 7 remainder 2

- Represented on a vertical number line:

The answer is still 7 remainder 2

The numberline should be filling downwards in preparation for repeated subtraction

Stage C: Sharing with place value counters
Stage of development

Year Three

- Write and calculate mathematical statements for division, including for two digit numbers using mental and progressing to formal written methods

Year Four

- Divive two-digit and three-digit numbers by a one-digit number using formal written layout

Underlying skills:

- Recall of appropriate multiplication facts
- Understanding the exchange of a 10 for ten 1 s
$42 \div 3=14$
000000 -००

Begin by sharing out the four 10s counters (42). In this calculation, three 10s counters can be shared into the three groups, with one 10 remaining. This 10 is exchanged to ten 1 s . The ten 1s, along with the original 2 1s (from 42) are then shared between the three groups.

Children to represent the place value counters pictorially.

Children to be able to make sense of the place value counters and write calculations to show the process.
$42 \div 3$
$42=30+12$
$30 \div 3=10$
$12 \div 3=4$
$10+4=14$

Stage E: Grouping

- Understand division as taking away groups at a time - different sized groups

$72 \div 5=14 \mathrm{r} 2$	14 r 2
	$5 \longdiv { 7 2 }$
	$\frac{-50(10 \times 5)}{22}$
Fact box:	$\frac{-20(4 \times 5)}{2}$

$10 \times 5=50$
$4 \times 5=20$

- Begin by establishing known possible groups by recalling multiplication facts for that number by writing out a fact box
- Use what you know to take away the biggest chunk possible
- Continue removing chunks until you can no longer do so. Any number left will be a remainder
- Add up the chunks you have taken.
- Some children may need to take smaller chunks until they develop efficiency
e.g. $196 \div 6$

The remainder can also be written as a
Efficient grouping

$\mathbf{3 2} \mathbf{~ r ~ 4 ~}$
$\mathbf{6} / \mathbf{1 9 5}$
$-\frac{\mathbf{1 8 0}}{\mathbf{1 6}}(30 \times 6)$
$-\frac{\mathbf{1 2}}{\mathbf{4}}(2 \times 6)$
$32 \frac{4}{6} \xrightarrow[\text { fraction }]{ }$

The remainder is written as the numerator on the top line and the number you have been dividing by goes underneath, the denominator.

- The subtraction aspects should ideally be done mentally. Where the child is incapable of this they should make use of the school approach with jottings next to their working out.
- Sensible choice of groups will help to avoid more difficult subtractions.

Underlying skills:

- Recall of appropriate multiplication facts
- Using known number facts to help derive others using: place value e.g. $2 \times 4=8$ so $20 \times 4=80$
doubling:
$10 \times 6=60$ so $20 \times 6=120$
adding known facts $10 \times 3=30 \quad 5 \times 3=15$ so $15 \times 3=45$
- Mental subtraction
- Knowledge of school written subtraction method for more difficult calculations

Year Four

Divide two-digit and three-digit numbers by a one-digit number using formal written layout

Year Five

Divide numbers up to 4 digits by a one-digit number using the formal written method of long division and interpret remainders appropriately for the context

New Vocabulary:
For fraction and decimal remainders:
fraction, decimal, equivalent, simplest form

For decomposition: exchange, regroup

Stage F Long Division (Formal method)

Place value can be used to help identify the most efficient groups to take (this is long division).

$756 \div 8=$	We are looking for the best groups to take away each time, note not necessarily the biggest
$8 \longdiv { 7 5 6 }$	If we take each higit in order then we can see what the best groups of 8 to take are.

What is the best number of 8 s to take out of 700 ?
If we use our place value knowledge then we know that we can't take any groups of 8 from 7 so we will move on (We can take groups of 8 from 700 but it's not the most useful groups).
Note: the best group of 8 will be a multiple of 100

HTU

$8 \longdiv { 7 5 6 }$
Now we need tolook at the fistst wod digis.
What is the best number of 8 s to take from 750 ? Using our place value and times tables we know that we can get 98 s in 75 because $9 \times 8=72$ so we can take a group of 908 s (which will be 720) in 750 (we can take more but this is the best group to take).
Note: the best group of 8 will be a multiple of 10

Underlying skills

Calculation of larger multiples of the divisor Derivation of key facts using fact box Interpretation of the remainder as a decimal Interpretation of the remainder as a fraction Efficient subtraction (decomposition)

Stage D: Short division (formal method)

Stage of Development
Year Four

- Divide two-digit and three-digit numbers by a one-digit number using formal written layout

Underlying skills

- Times tables and multiples
- Calculation of remainders
- Mental subtraction of multiples
$615 \div 5$

1. Make 615 with place value counters.
2. How many groups of 5 hundreds can you make with 6 hundred counters?
3. Exchange 1 hundred for 10 tens.
4. How many groups of 5 tens can you make with 11 ten counters?
5. Exchange 1 ten for 10 ones.
6. How many groups of 5 ones can you make with 15 ones?

Represent the place value counters pictorially.

Children to the calculation using the short
division scaffold.

123
 $5 \longdiv { 6 ^ { \prime } 1 ^ { 1 } 5 }$

Stage E: Long Division
Stage of development

Year Five

- Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context

Year Six

- Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
$2544 \div 12$

1000 s	100 s	10 s	1s
00	8000	0000	0000

We can't group 2 thousands into groups of 12 so will exchange them.

1000s	100s	10s	Is	We can group 24 hundreds into groups of 12 which leaves with 1 hundred.	02
		उOणO	రणరం		$\text { 12 } \begin{gathered} 2544 \\ \quad 24 \\ \hline \end{gathered}$
	¢ 6808				1

1000s	100s	10s	Is
			-00\%

After exchanging the hundred, we
021
have 14 tens. We can group 12 tens into a group of 12 , which leaves 2 tens.

24 14 12
2

1000s	100s	10s	15
		8000	

After exchanging the 2 tens, we have 24 ones. We can group 24 ones into 2 group of 12 , which leaves no remainder

